In relation to the civil nuclear sector specifically, there are four key applications envisaged for blockchain.
The first is in the uranium fuel supply chain, which involves a number of parties and a significant amount of oversight, extending from the mine, fuel processing and purchase, to plant operation. This may involve reprocessing, or spent fuel may go directly to storage. As national and international regulators require that nuclear material is tracked and that records are kept for each movement, storing these records on a blockchain platform has the potential for greater supply chain transparency and reduced risk of fraud.
Regulators require strict inventories of parts and materials used in the construction, operation and post-operation of a nuclear power facility. By securely tracking ownership, custody and location of components and materials, a further application of blockchain technology could ensure effective management of these materials even after the decommissioning of nuclear facilities. When processes such as product lifecycle management (PLM) and building information modelling (BIM) interfaces are implemented, assets can be tracked over their life-cycle. BIM is set to play an important role in the nuclear industry in aligning with the government initiative Digital Built Britain,1 which seeks to digitalise the entire phase of an asset, allowing for effective data management. The software was crucial to the successful planning and construction of the Hinkley Point C nuclear power station in the UK, monitoring the movement of materials and helping to reduce the risk of delay.
To optimise the use of BIM, however, changes in workflow and practices must also occur, as implementing the software alone is not enough. Everyone involved in the project has a significant contribution to make and this must be filtered down the supply chain to ensure the software is deployed and updates to the data effected so that digital records represent the physical reality.2 A caveat to this is that project participants will need to trust the information the model contains. Blockchain can address such questions of trust by securely tracking and making available to participants the information uploaded to it, leading to increased accountability for contributors if something goes wrong, and enabling effective tracking of materials over their (often lengthy) life-cycle.
Another category of applications involves the use of blockchain (and DLT more generally) for recording events within a single facility or company - for example, the logging of entries to and departures from a secure site. Here the key benefit of blockchain is the creation of a tamper-proof record of events, thereby aiding security of the facility, and enabling guarantees to be provided to regulators, insurers, and business partners. These applications may only involve a single company rather than a consortium of companies.
Related to these applications is regulatory oversight. Blockchain may facilitate more effective and efficient interface with regulators. Domestically and internationally, there are a number of regulators and agencies involved in the nuclear power industry, some with direct oversight or who provide a peer review function (such as the Office of Nuclear Regulation and the International Atomic Energy Agency). By using blockchain technology, the burden of reporting could be reduced as regulators can access up-to-date information on a near real-time basis.